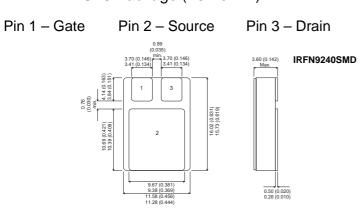

IRF9240 IRFN9240 IRF9240SMD

MECHANICAL DATA


Dimensions in mm (inches)

IRF9240

P-CHANNEL POWER MOSFET

TO-3 Package (TO-204AA)

SMD1 (TO276AB)

Pin 1 - Gate

Pin 2 - Drain

Pin 3 - Source

FEATURES

- P-CHANNEL POWER MOSFET
- HIGH VOLTAGE
- INTEGRAL PROTECTION DIODE
- AVAILABLE IN TO-3 (TO-204AA) AND **CERAMIC SURFACE MOUNT SMD1** (TO276AB)PACKAGE

Note: IRF9240SMD also available with pins 1 and 3 reversed on SMD 1 package.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{DSS}	Drain – Source Voltage		–200V
V_{DGR}	Drain – Gate Voltage ($R_{GS} = 20K\Omega$)		–200V
V_{GS}	Gate – Source Voltage		±20V
I _D	Continuous Drain Current	@ T _{case} = 25°C	-11A
		@ T _{case} = 100°C	–7.0A
I_{DM}	Pulsed Drain Current		-44A
P_{D}	Max. Power Dissipation	@ T _{case} = 25°C	125W
	Linear Derating Factor		1W / °C
T _j	Operating Junction and		−55 to 150°C
T _{stg}	Storage Temperature Range		-55 to 150 C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

IRF9240 IRFN9240 IRF9240SMD

ELECTRICAL RATINGS (T_{case} = 25°C unless otherwise stated)

	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = -1mA$	-200			V
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	-2		-4	V
I _{GSS}	Gate – Source Leakage Current (forward)	V _{GS} = −20V			-100	nA
	Gate – Source Leakage Current (reverse)	V _{GS} = 20V			100	nA
	Zero Gate Voltage Drain Current	$V_{DS} = -160V , V_{GS} = 0V$			-25	μΑ
I _{DSS}		V _{DS} = -160V			-1	mA
		V _{GS} = 0V , T _{case} = 125°C				
1	On State Drain Current ¹	$V_{DS} > I_{D(ON)} \times R_{DS(ON)} Max$	_11			Α
I _{D(ON)}		$V_{GS} = -10V$	-''			_ ^
R _{DS(ON)}	Static Drain – Source On-State Resistance	$V_{GS} = -10V$, $I_D = -7A$		0.35	0.5	Ω
	Forward Transconductance ¹	$V_{DS} > I_{D(ON)} \times R_{DS(ON)} Max$	4	6		S
9 _{fs}		$I_D = -7A$				3
C _{iss}	Input capacitance	V _{GS} = 0V		1200		pF
C _{oss}	Output capacitance	V _{DS} = −25V		570		
C _{rss}	Reverse transfer capacitance	f = 1MHz		81		
Q_g	Total Gate Charge	V _{GS} = −10V	28		60	
Q _{gs}	Gate – Source Charge	I _D = -11A	3.0		15	nC
Q _{gd}	Gate - Drain ("Miller") Charge	V _{DS} = -100V	4.5		38	
t _{d(on)}	Turn-on Delay Time	$V_{DD} = -100V$ $I_{D} = -11A$ $Z_{O} = 9.1\Omega$			35	ne
t _r	Rise Time				85	
t _{d(off)}	Turn-off Delay Time				85	ns
t _f	Fall Time				65	
L _D	Internal Drain Inductance			5.0		nΗ
L _S	Internal Source Inductance			12.5		nΗ

THERMAL CHARACTERISTICS

	Characteristic		Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction to Case				1.0	°C/W
$R_{\theta JA}$	Junction to Ambient	(TO-3 package only)			30	°C/W
TL	Max. Lead Temperature 0.063" from case for 10 sec.	(TO-3 package only)		300		°C

SOURCE – DRAIN DIODE RATINGS AND CHARACTERISTICS

Characteristic	Test Conditions	Min.	Тур.	Max.	Unit	
Continuous Source Current (Body Diode)				-11	Α	
Pulsed Source Current ¹ (Body Diode)				-44	Α	
Diode Forward Voltage ²	$V_{GS} = 0V$, $I_S = -11A$ $T_{case} = 25^{\circ}C$			-4.6	V	
Reverse Recovery Time	$I_F = -11A$, $dI_F / dt = 100A/μs$ $T_j = 25°C$		270		ns	
Reverse Recovery Charge	$I_F = -11A$, $dI_F / dt = 100A/μs$ $T_j = 25°C$		2.0		μC	
	Continuous Source Current (Body Diode) Pulsed Source Current ¹ (Body Diode) Diode Forward Voltage ² Reverse Recovery Time	Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage 2 Reverse Recovery Time $V_{GS} = 0V$, $I_S = -11A$ $V_{Case} = 25^{\circ}C$ $I_F = -11A$, $dI_F/dt = 100A/\mu s$ $V_{GS} = 0V$, $I_S = -11A$ $V_{Case} = 25^{\circ}C$ $V_{GS} = 0V$, $V_{GS} = $	Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage ² Reverse Recovery Time $V_{GS} = 0V$, $I_{S} = -11A$ $T_{case} = 25^{\circ}C$ $I_{F} = -11A$, $dI_{F}/dt = 100A/\mu s$ $T_{j} = 25^{\circ}C$ Reverse Recovery Charge	Continuous Source Current (Body Diode) Pulsed Source Current ¹ (Body Diode) Diode Forward Voltage ² Reverse Recovery Time $V_{GS} = 0V$, $I_{S} = -11A$ $T_{case} = 25^{\circ}C$ $I_{F} = -11A$, $dI_{F}/dt = 100A/\mu s$ $T_{j} = 25^{\circ}C$ Reverse Recovery Charge $I_{F} = -11A$, $dI_{F}/dt = 100A/\mu s$ 270	Continuous Source Current (Body Diode) Pulsed Source Current ¹ (Body Diode) $V_{GS} = 0 \text{ V}, \text{ I}_{S} = -11 \text{ A}$ $T_{case} = 25^{\circ}\text{ C}$ Reverse Recovery Time $I_{F} = -11 \text{ A}, \text{ dI}_{F}/\text{ dt} = 100 \text{ A}/\mu\text{s}$ $T_{j} = 25^{\circ}\text{ C}$ Reverse Recovery Charge $I_{F} = -11 \text{ A}, \text{ dI}_{F}/\text{ dt} = 100 \text{ A}/\mu\text{s}$ $T_{j} = 25^{\circ}\text{ C}$	

¹⁾ Pulse Test: Pulse Width < $300\mu S$, Duty Cycle $\leq 2\%$ 2) Repetitive Rating: Pulse Width limited by maximum junction temperature.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 3345

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 2